
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 03 –

Arrays and Functions

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• C++ Primer

–Arithmetic expressions

–Operators

– Type casting

– Input / Output

–C-Strings

–Control Structures

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To understand how functions work in C++

– Prototype

– Definition

– Call

• To cover the basics of arrays

– Declaration and initialization

– Multi-dimensional arrays

• To examine how arrays and functions interact

4

www.umbc.edu

Functions

www.umbc.edu

“Parts” of Using Functions

• Function Prototype (Declaration)

– Information for compiler

– To properly interpret calls

• Function Definition

– Actual implementation (i.e., code) for function

• Function Call

– How function is actually used by program

– Transfers control to the function

6

www.umbc.edu

Function Prototype

• Gives compiler information about the function

– How to interpret calls to the function

<return type> <fxn name> (<parameters>);

int squareNumber (int n);

– Must have the parameter’s data types

• Placed before any calls

– In declaration space of main()

– Or above main() for global access

7

www.umbc.edu

Function Definition

• Implementation of the function

– Just like implementing the main() function

int squareNumber (int n) {

 int answer = n * n;

 return answer;

}

• Function definition must match prototype

8

www.umbc.edu

Function Definition Placement

• Placed after the function main()

–NOT inside the function main()!

• All functions are equal

– No function is contained inside another

• Function name, parameter type, and return type
all must match the prototype’s

• return statement sends data back to the caller

9

www.umbc.edu

Function Call

• Very similar to how it’s done in Python
int tenSquared = squareNum(10);

• squareNum() returns an integer

– Assigned to the variable tenSquared

• Arguments: the “literal” 10

– Could also have passed a variable

– Must be of type int – why?

 10

www.umbc.edu

 Function Example (part 1)

11

www.umbc.edu

Function Example (part 2)

12

www.umbc.edu

Function Example (usage)

• Notice that the formatting changes
made to cout are persistent

• They applied to both $10.10 and $21.21

13

www.umbc.edu

Parameters vs Arguments

• Often used interchangeably

– Technically, parameter is formal variable name;
argument is actual value or variable

• “Formal” parameters/arguments

– In the function prototype

– In the function definition

• “Actual” parameters/arguments

– In the function call

14

www.umbc.edu

Returning “void”

• “void” functions are for when we don’t need to
get a value back from the function

– Used for functions that only have side effects

– (e.g., printing out information)

• Returning “void” means no value is returned

• Declaration is similar to “regular” functions
void printResults(double cost, double tax);

– Nothing is returned

15

www.umbc.edu

“return” Statements

• Transfers control back to the calling function

• “return” statement optional for void functions

• All other returns types must have a return
statement in the function

– An error results otherwise

• Typically the last statement in the definition

– Why?

16

www.umbc.edu

Pre- and Post-Conditions

• For this class, you’ll need to include function
headers in your code (coding standards)

– Must contain name, pre-, and post-conditions

• Conditions include assumptions about program
state, not just the input and output
// Function name: showInterest

// Pre-condition: balance is nonnegative account

// balance; rate is interest rate as percentage

// Post-condition: amount of interest on given

// balance, at given rate

void showInterest(double balance, double rate);

17

www.umbc.edu

Library Functions

• C++ has libraries full of useful functions!

• Must "#include" appropriate library

– e.g.,

– <cmath>, <cstdlib> (Original "C" libraries)

– <iostream> (for cout, cin)

• Library functions are used in the same way as
programmer-created functions

18

www.umbc.edu

Useful Library Functions (part 1)

19

www.umbc.edu

Useful Library Functions (part 2)

20

www.umbc.edu

The main() Function

• main() is also a function – a “special” one!

• One (and only one) function called
main() can exist in a program

• The operating system calls main()

– Not the programmer!

• Should return an integer (0 is traditional)

– return 0;

21

www.umbc.edu

Why Use Functions?

• Allows you to build “blocks” of programs

– Divide and conquer large problems

• Increases readability and reusability

– Put in a separate file from main() for easy sharing

• Quick note:

– Functions in C++ can only return one thing!!!

– (For now)

22

www.umbc.edu

Arrays

www.umbc.edu

Arrays

• An array is a collection of related data items

– An array can be of any data type you choose

– They all have the same data type

• Arrays are static – their size does not change

– They are declared contiguously in memory

– In other words, an array’s data is stored in
one big block, together

 24

www.umbc.edu

Declaring Arrays

• Declaration:
<type> <name> [size];

float xArray [10];

– This array now has room to hold 10 floats

• Indexing starts at 0:
xArray[9]; /* end of the array */

25

www.umbc.edu

Limitations of an Array

• An array does not know how large it is

– No size() function

– No bounds checking – you must be careful!

• Arrays are static

– Their size must be known at compile time

– Their size cannot be changed once set

– You cannot use user input for array size

“How many numbers would you like to store?”

26

www.umbc.edu

Array Initialization

• A declaration does not initialize the data
stored in the memory locations

– They contain “garbage” data

• Whatever is left from the last time it was used

• An array can be initialized at declare time:
int numbers[5] = { 5, 2, 6, 9, 3 };

27

5 2 6 9 3

www.umbc.edu

Auto-Initialization

• If there are fewer values than the given size:

– Fills values starting at the beginning

– Remainder is filled with that data type’s “zero”

• If no array size is given:

– Array is created only as big as is needed
based on the number of initialization values

int yArray[] = {5, 12, 11};

– Allocates array yArray to hold 3 integers

 28

www.umbc.edu

C-String Initialization

• C-Strings are arrays of characters

• They can be initialized in the normal way
char name[5] = {'J', 'o', 'h', 'n', 0 };

• Or with a string constant:
char name[5] = "John";

• Different quotes have different purposes!!!

– Double quotes are for strings

– Single quotes are for chars (characters)

29

www.umbc.edu

Accessing Array Elements

• Use square brackets to access a single element
cout << "The third element is "

 << numbers[2] << endl;

• This gives the output:
The third element is 6

30

0 1 2 3 4

5 2 6 9 3 numbers =

www.umbc.edu

Accessing Array Elements

• C++ also accepts any expression as a “subscript”

–But it must evaluate to an integer

numbers[(start + end) / 2];

• IMPORTANT!

• C++ does not do bounds checking for simple
arrays, so you must ensure you are staying
within bounds

31

www.umbc.edu

Constants as Array Size

• You should always used a defined/named
constant for your array size

– Do not use magic numbers!

const int NUMBER_OF_STUDENTS = 5;

int score[NUMBER_OF_STUDENTS];

• Improves readability, versatility, and
maintainability

32

www.umbc.edu

Arrays and Functions

www.umbc.edu

Arrays in Functions

• As arguments to functions

– Indexed variables

• An individual element of an array can be passed

– Entire arrays

• All array elements can be passed as one entity

• As return value from function

– Can be done, but we’ll cover it later

34

www.umbc.edu

Passing Indexed Variables

• Handled the same way as a “regular” variable

– Function declaration:

void myFunction(double par1);

– Variables:

double n, a[10];

– Valid function calls:

myFunction(a[3]); // a[3] is double

myFunction(n); // n is double

 35

www.umbc.edu

Passing Entire Arrays

• Formal parameter can be an entire array

– Passed into the function by the array’s name

– Called an array parameter

• Must send size of array as well

– Typically done as second parameter

– Simple integer-type formal parameter

36

www.umbc.edu

Live Coding Exercise

fillUp.cpp

Arrays, initialization, and functions

www.umbc.edu

Array Parameter Example

38

www.umbc.edu

Array as Argument Example

• Using the function from the previous slide,
consider this code, inside a main() function:

int score[5], numberOfScores = 5;

fillUp(score, numberOfScores);

39

entire array integer value

Note the lack of [] brackets
in the array argument!

www.umbc.edu

Array as Argument Explanation

• How does this work? What’s being passed?

• Think of an array as 3 components:

– Address of first indexed variable (arrName[0])

– Array base type

– Size of array

• Only the first piece is passed!

– Just the beginning address of the array

– We’ll discuss this in detail later

40

www.umbc.edu

Array Parameters

• Array size must be sent separately

– But this actually increases functionality!

• Same function can be used on any size array!

int score[5], time[10];

fillUp(score, 5);

fillUp(time, 10);

41

www.umbc.edu

Multidimensional Arrays

• Arrays with more than one index
char page[30][100];

– Two indices: an "array of arrays"

– Visualize as:
page[0][0], page[0][1], ..., page[0][99]

page[1][0], page[1][1], ..., page[1][99]

...

page[29][0], page[29][1], ..., page[29][99]

• C++ allows any number of indexes

– Typically no more than two or three

 42

www.umbc.edu

Multidimensional Array Parameters

• Similar to one-dimensional array

– 1st dimension size not given

• Provided as second parameter of function

– 2nd dimension size is given

void DisplayPage(char page[][100], int numRows) {

 for (int i = 0; i < numRows; i++) {

 for (int j = 0; j < 100; j++) {

 cout << page[i][j];

 }

 cout << endl;

 }

}

43

www.umbc.edu

Review: Array Limitations

• Simple arrays have limitations

– Array out-of-bounds access

– No resizing

– Hard to get current size

– Not initialized

– Mostly due to efficiency and backwards-
compatibility, which are high priorities in C/C++

• Later, we will learn about the vector class,
which addresses many of these issues

44

www.umbc.edu

Announcements

• The course policy agreement is due back in
class by Tuesday, February 9th

– Worth 1% of your grade

– (Final is now worth 19%)

• The Blackboard site is now available

– Course schedule is now available

• Next time: Pointers and References

45

