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Last Class We Covered

* C++ Primer
— Arithmetic expressions
— Operators
— Type casting
—Input / Output
— C-Strings
— Control Structures
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Any Questions from Last Time?
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Today’s Objectives

To understand how functions work in C++
— Prototype

— Definition

— Call

To cover the basics of arrays

— Declaration and initialization

— Multi-dimensional arrays

To examine how arrays and functions interact
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Functions
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“Parts” of Using Functions

* Function Prototype (Declaration)
— Information for compiler

— To properly interpret calls

 Function Definition

— Actual implementation (i.e., code) for function

* Function Call

— How function is actually used by program
— Transfers control to the function
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Function Prototype

* Gives compiler information about the function

— How to interpret calls to the function

<return type> <fxn name> (<parameters>);

int squareNumber (int n);

— Must have the parameter’s data types

* Placed before any calls
— In declaration space of main ()

— Or abovemain () for global access

www.umbc.edu



Function Definition

* I[mplementation of the function
— Just like implementing the main () function

int squareNumber (int n) {
int answer = n * n;

return answer;

* Function definition must match prototype

8
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Function Definition Placement

Placed after the function main ()
—NOT inside the function main () !

All functions are equal

— No function is contained inside another

Function name, parameter type, and return type
all must match the prototype’s

return statement sends data back to the caller
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Function Call

* Very similar to how it’s done in Python
int tenSquared = squareNum(10) ;

* squareNum () returns an integer
— Assigned to the variable tenSquared

 Arguments: the “literal” 10

— Could also have passed a variable
— Must be of type int — why?
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Function Example (part 1)

AN HONORS UNIVERSITY IN MARYLAND

Display 3.5
1 #include <iostream>
2 using namespace std;
3 double totalCost(int numberParameter, double priceParameter);
4 //Computes the total cost, including 5% sales tax,
5 J/on numberParameter items at a cost of priceParameter each.
Function declaration;

6 1int main( ) also called the function
7 { prototype
8 double price, bill;
9 int number;
10 cout << "Enter the number of items purchased: ";
11 cin >> number;
12 cout << "Enter the price per item §";
13 cin >> price; ‘/,,-a Function call
14 bill = totalCost(number, price);

11

www.umbc.edu



Function Example (part 2)
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15 cout.setf(ios::fixed);
16 cout.setf(ios::showpoint);
17 cout.precision(2);
18 cout << number << " items at "
19 << "$" << price << " each.\n"
20 << "Final bill, including tax, is $" << bill
21 << endl;
Function
22 return 0; head

23 } )’//

24 double totalCost(int numberParameter, double priceParameter)
25 |

26 const double TAXRATE = 0.05; //5% sales taXx
27 double subtotal; Function
Function definition
28 subtotal = priceParameter * numberParameter; boady
29 return (subtotal + subtotal*TAXRATE);
30 }
12
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Function Example (usage)

* Notice that the formatting changes
made to cout are persistent

* They applied to both $10.10 and $21.21

SAMPLE DIALOGUE

Enter the number of items purchased: 2
Enter the price per item: $10.10

2 items at $10.10 each.

Final bill, including tax, is $21.21
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Parameters vs Arguments

e Often used interchangeably

— Technically, parameter is formal variable name;
argument is actual value or variable

* “Formal” parameters/arguments
— In the function prototype
— In the function definition

* “Actual” parameters/arguments

— In the function call

14
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Returning “void”

e “void” functions are for when we don’t need to
get a value back from the function

— Used for functions that only have side effects
— (e.g., printing out information)

e Returning “void” means no value is returned

* Declaration is similar to “regular” functions
void printResults (double cost, double tax);

— Nothing is returned

15

www.umbc.edu



16

“return” Statements

Transfers control back to the calling function

“return” statement optional for void functions

All other returns types must have a return
statement in the function

— An error results otherwise

Typically the last statement in the definition
— Why?
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Pre- and Post-Conditions

* For this class, you’ll need to include function
headers in your code (coding standards)

— Must contain name, pre-, and post-conditions

* Conditions include assumptions about program
state, not just the input and output

// Function name: showInterest

// Pre-condition: balance is nonnegative account
// balance; rate is interest rate as percentage
// Post-condition: amount of interest on given

// balance, at given rate

void showInterest (double balance, double rate);
www.umbc.edu
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Library Functions

e C++ has libraries full of useful functions!
* Must "#include" appropriate library

—e.g.,
—<cmath>, <cstdlib> (Original "C" libraries)

— <iostream> (for cout, cin)

e Library functions are used in the same way as
programmer-created functions

18
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Useful Library Functions (part 1)
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Display 3.2 Some Predefined Functions

sqrt Square double double sqrt(4.0) 2.0 cmath
root

pow Powers double double pow(2.0,3.0) 8.0 cmath

abs Absolute int int abs(-7) 7 cstdlib
value for abs (7) 7
int

labs Absolute long long labs(-70000) 70000 cstdlib
value for ].CIbS(?@GGG) 70000
long

fabs Absolute double double fabs(-7.5) 7.5 cmath
value for 'FCIbS(?S) /7.5
double
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Useful Library Functions (part 2)
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ceil

floor

exit

rand

srand
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Themain () Function

* main () is also a function — a “special” one!

* One (and only one) function called
main () can existin a program

 The operating system calls main ()

— Not the programmer!

e Should return an integer (O is traditional)

— return O;

21
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Why Use Functions?

* Allows you to build “blocks” of programs

— Divide and conquer large problems

* |ncreases readability and reusability
— Put in a separate file frommain () for easy sharing

* Quick note:
— Functions in C++ can only return one thing!!!
— (For now)

22
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Arrays
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* An array is a collection of related data items

— An array can be of any data type you choose
— They all have the same data type

* Arrays are static — their size does not change
— They are declared contiguously in memory

— In other words, an array’s data is stored in
one big block, together

24
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Declaring Arrays

* Declaration:
<type> <name> [size];
float =xArray [10];

— This array now has room to hold 10 floats

* |Indexing starts at O:
xArray[9]; /* end of the array */

25
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Limitations of an Array

* An array does not know how large it is
— No size () function

— No bounds checking — you must be careful!

* Arrays are static

— Their size must be known at compile time

— Their size cannot be changed once set
— You cannot use user input for array size

o H 124
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Array Initialization

* A declaration does not initialize the data
stored in the memory locations

— They contain “garbage” data
e Whatever is left from the last time it was used

* An array can be initialized at declare time:
int numbers[5] = { 5, 2, 6, 9, 3 };

52 |6 |93
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Auto-lnitialization

* |f there are fewer values than the given size:
— Fills values starting at the beginning
— Remainder is filled with that data type’s “zero”

* |f no array size is given:

— Array is created only as big as is needed
based on the number of initialization values

int yArray|[] = {5, 12, 11};
— Allocates array yArray to hold 3 integers

28
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C-String Initialization

e C-Strings are arrays of characters

* They can be initialized in the normal way

char name[5] = {'J', 'o', 'h', 'n', 0 };

* Or with a string constant:

char name[5] = "John";

* Different quotes have different purposes!!!
— Double quotes are for strings

— Single quotes are for chars (characters)
29
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Accessing Array Elements

* Use square brackets to access a single element
cout << "The third element is "
<< numbers[2] << endl;

* This gives the output:
The third element is 6

I
Ol
N
o)
O
W

numbers
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Accessing Array Elements

* C++ also accepts any expression as a “subscript”

— But it must evaluate to an integer
numbers|[ (start + end) / 2];

* IMPORTANT!

e C++ does not do bounds checking for simple
arrays, so you must ensure you are staying
within bounds

31
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Constants as Array Size

* You should always used a defined/named
constant for your array size

— Do not use magic numbers!

const int NUMBER OF STUDENTS = 5;
int score[NUMBER OF STUDENTS];

* I[mproves readability, versatility, and
maintainability

32
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Arrays and Functions
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Arrays in Functions

e As arguments to functions
—Indexed variables

* An individual element of an array can be passed

— Entire arrays

e All array elements can be passed as one entity

 As return value from function

— Can be done, but we’ll cover it later

34
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Passing Indexed Variables

 Handled the same way as a “regular” variable

— Function declaration:
void myFunction (double parl);

— Variables:
double n, a[l0];

— Valid function calls:
myFunction(a[3]); // a[3] is double
myFunction (n) ; // n is double

35
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Passing Entire Arrays

 Formal parameter can be an entire array
— Passed into the function by the array’s name
— Called an array parameter

* Must send size of array as well
— Typically done as second parameter
— Simple integer-type formal parameter

36
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Live Coding Exercise

£fi111Up.cpp

Arrays, initialization, and functions
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Array Parameter Example

AN HONORS UNIVERSITY IN MARYLAND

Display 5.3 Function with an Array Parameter

SAMPLE DIALOGUEFUNCTION DECLARATION

void fillUp(int a[], int size);

//Precondition: size 1is the declared size of the array a.
//The user will type in size integers.

//Postcondition: The array a is filled with size integers
//from the keyboard.

SAMPLE DIALOGUEFUNCTION DEFINITION

void fillUp(int a[], int size)

{
cout << "Enter " << size << " numbers:\n";
for (int 1 = 0; 1 < size; i++)
cin >> ali]l;
cout << "The last array index used is " << (size - 1) << endl;
h
38
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Array as Argument Example

* Using the function from the previous slide,
consider this code, inside amain () function:

int score[5], numberOfScores = 5;

fillUp (score, numberOfScores) ;

entire array integer value

Note the lack of [] brackets
in the array argument!

39
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Array as Argument Explanation

* How does this work? What’s being passed?

* Think of an array as 3 components:
— Address of first indexed variable (arrName[0])
— Array base type
— Size of array

* Only the first piece is passed!
— Just the beginning address of the array
— We’ll discuss this in detail later

40
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Array Parameters

* Array size must be sent separately

— But this actually increases functionality!

 Same function can be used on any size array!

int score[5], time[1l0];
fillUp (score, 5);
£fillUp(time, 10);

41
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Multidimensional Arrays

* Arrays with more than one index
char page[30][100];

— Two indices: an "array of arrays"

— Visualize as:
page[0] [0], page[O][1l], ..., page[0][99]
page[1] [0], page[l][1l], ..., page[l][99]
page[29] [0], page[29][1], ..., page[29][99]

* C++ allows any number of indexes

— Typically no more than two or three

42
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Multidimensional Array Parameters

AN HONORS UNIVERSITY IN MARYLAND

* Similar to one-dimensional array

— 1st dimension size not given
* Provided as second parameter of function

— 2nd dimension size is given

void DisplayPage (char page[][100], int numRows) {
for ( int 1 = 0; i < numRows; i++ ) {
for ( int jJ = 0; j < 100; j++ ) {
cout << page[i][j];
}
cout << endl;

43
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Review: Array Limitations

* Simple arrays have limitations
— Array out-of-bounds access
— No resizing
— Hard to get current size
— Not initialized
— Mostly due to efficiency and backwards-
compatibility, which are high priorities in C/C++

e Later, we will learn about the vector class,
which addresses many of these issues

44
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Announcements

* The course policy agreement is due back in
class by Tuesday, February 9t

— Worth 1% of your grade
— (Final is now worth 19%)

* The Blackboard site is now available

— Course schedule is now available
e Next time: Pointers and References

45
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