CMSC202
Computer Science Il for Majors

Lecture 03 —
Arrays and Functions

Based on slides by Chris Marron at UMBC www.umbc.edu

Last Class We Covered

* C++ Primer
— Arithmetic expressions
— Operators
— Type casting
—Input / Output
— C-Strings
— Control Structures

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

To understand how functions work in C++
— Prototype

— Definition

— Call

To cover the basics of arrays

— Declaration and initialization

— Multi-dimensional arrays

To examine how arrays and functions interact

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Functions

www.umbc.edu

“Parts” of Using Functions

* Function Prototype (Declaration)
— Information for compiler

— To properly interpret calls

 Function Definition

— Actual implementation (i.e., code) for function

* Function Call

— How function is actually used by program
— Transfers control to the function

www.umbc.edu

Function Prototype

* Gives compiler information about the function

— How to interpret calls to the function

<return type> <fxn name> (<parameters>);

int squareNumber (int n);

— Must have the parameter’s data types

* Placed before any calls
— In declaration space of main ()

— Or abovemain () for global access

www.umbc.edu

Function Definition

* I[mplementation of the function
— Just like implementing the main () function

int squareNumber (int n) {
int answer = n * n;

return answer;

* Function definition must match prototype

8

www.umbc.edu

Function Definition Placement

Placed after the function main ()
—NOT inside the function main () !

All functions are equal

— No function is contained inside another

Function name, parameter type, and return type
all must match the prototype’s

return statement sends data back to the caller

www.umbc.edu

Function Call

* Very similar to how it’s done in Python
int tenSquared = squareNum(10) ;

* squareNum () returns an integer
— Assigned to the variable tenSquared

 Arguments: the “literal” 10

— Could also have passed a variable
— Must be of type int — why?

10

www.umbc.edu

Function Example (part 1)

AN HONORS UNIVERSITY IN MARYLAND

Display 3.5
1 #include <iostream>
2 using namespace std;
3 double totalCost(int numberParameter, double priceParameter);
4 //Computes the total cost, including 5% sales tax,
5 J/on numberParameter items at a cost of priceParameter each.
Function declaration;

6 1int main() also called the function
7 { prototype
8 double price, bill;
9 int number;
10 cout << "Enter the number of items purchased: ";
11 cin >> number;
12 cout << "Enter the price per item §";
13 cin >> price; ‘/,,-a Function call
14 bill = totalCost(number, price);

11

www.umbc.edu

Function Example (part 2)

AN HONORS UNIVERSITY IN MARYLAND

15 cout.setf(ios::fixed);
16 cout.setf(ios::showpoint);
17 cout.precision(2);
18 cout << number << " items at "
19 << "$" << price << " each.\n"
20 << "Final bill, including tax, is $" << bill
21 << endl;
Function
22 return 0; head

23 })’//

24 double totalCost(int numberParameter, double priceParameter)
25 |

26 const double TAXRATE = 0.05; //5% sales taXx
27 double subtotal; Function
Function definition
28 subtotal = priceParameter * numberParameter; boady
29 return (subtotal + subtotal*TAXRATE);
30 }
12

www.umbc.edu

Function Example (usage)

* Notice that the formatting changes
made to cout are persistent

* They applied to both $10.10 and $21.21

SAMPLE DIALOGUE

Enter the number of items purchased: 2
Enter the price per item: $10.10

2 items at $10.10 each.

Final bill, including tax, is $21.21

13

www.umbc.edu

Parameters vs Arguments

e Often used interchangeably

— Technically, parameter is formal variable name;
argument is actual value or variable

* “Formal” parameters/arguments
— In the function prototype
— In the function definition

* “Actual” parameters/arguments

— In the function call

14

www.umbc.edu

Returning “void”

e “void” functions are for when we don’t need to
get a value back from the function

— Used for functions that only have side effects
— (e.g., printing out information)

e Returning “void” means no value is returned

* Declaration is similar to “regular” functions
void printResults (double cost, double tax);

— Nothing is returned

15

www.umbc.edu

16

“return” Statements

Transfers control back to the calling function

“return” statement optional for void functions

All other returns types must have a return
statement in the function

— An error results otherwise

Typically the last statement in the definition
— Why?

www.umbc.edu

Pre- and Post-Conditions

* For this class, you’ll need to include function
headers in your code (coding standards)

— Must contain name, pre-, and post-conditions

* Conditions include assumptions about program
state, not just the input and output

// Function name: showInterest

// Pre-condition: balance is nonnegative account
// balance; rate is interest rate as percentage
// Post-condition: amount of interest on given

// balance, at given rate

void showInterest (double balance, double rate);
www.umbc.edu

17

Library Functions

e C++ has libraries full of useful functions!
* Must "#include" appropriate library

—e.g.,
—<cmath>, <cstdlib> (Original "C" libraries)

— <iostream> (for cout, cin)

e Library functions are used in the same way as
programmer-created functions

18

www.umbc.edu

Useful Library Functions (part 1)

AN HONORS UNIVERSITY IN MARYLAND

Display 3.2 Some Predefined Functions

sqrt Square double double sqrt(4.0) 2.0 cmath
root

pow Powers double double pow(2.0,3.0) 8.0 cmath

abs Absolute int int abs(-7) 7 cstdlib
value for abs (7) 7
int

labs Absolute long long labs(-70000) 70000 cstdlib
value for].CIbS(?@GGG) 70000
long

fabs Absolute double double fabs(-7.5) 7.5 cmath
value for 'FCIbS(?S) /7.5
double

19

www.umbc.edu

Useful Library Functions (part 2)

AN HONORS UNIVERSITY IN MARYLAND

ceil

floor

exit

rand

srand

20

Ceiling
(round
up)

Floor
(round
down)

End pro-
gram

Random
number

Set seed
for rand

double

double

int

None

unsigned

int

double

double

void

int

void

ceil(3.2)
ceil(3.9)

floor(3.2)
floor(3.9)

exit(1l);

rand()

srand(42);

L
loN o

w w
loN o)

None

Varies

None

cmath

cmath

cstdlib

cstdlib

cstdlib

www.umbc.edu

Themain () Function

* main () is also a function — a “special” one!

* One (and only one) function called
main () can existin a program

 The operating system calls main ()

— Not the programmer!

e Should return an integer (O is traditional)

— return O;

21

www.umbc.edu

Why Use Functions?

* Allows you to build “blocks” of programs

— Divide and conquer large problems

* |ncreases readability and reusability
— Put in a separate file frommain () for easy sharing

* Quick note:
— Functions in C++ can only return one thing!!!
— (For now)

22

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Arrays

www.umbc.edu

* An array is a collection of related data items

— An array can be of any data type you choose
— They all have the same data type

* Arrays are static — their size does not change
— They are declared contiguously in memory

— In other words, an array’s data is stored in
one big block, together

24

www.umbc.edu

Declaring Arrays

* Declaration:
<type> <name> [size];
float =xArray [10];

— This array now has room to hold 10 floats

* |Indexing starts at O:
xArray[9]; /* end of the array */

25

www.umbc.edu

Limitations of an Array

* An array does not know how large it is
— No size () function

— No bounds checking — you must be careful!

* Arrays are static

— Their size must be known at compile time

— Their size cannot be changed once set
— You cannot use user input for array size

o H 124

26

www.umbc.edu

Array Initialization

* A declaration does not initialize the data
stored in the memory locations

— They contain “garbage” data
e Whatever is left from the last time it was used

* An array can be initialized at declare time:
int numbers[5] = { 5, 2, 6, 9, 3 };

52 |6 |93

27

www.umbc.edu

Auto-lnitialization

* |f there are fewer values than the given size:
— Fills values starting at the beginning
— Remainder is filled with that data type’s “zero”

* |f no array size is given:

— Array is created only as big as is needed
based on the number of initialization values

int yArray|[] = {5, 12, 11};
— Allocates array yArray to hold 3 integers

28

www.umbc.edu

C-String Initialization

e C-Strings are arrays of characters

* They can be initialized in the normal way

char name[5] = {'J', 'o', 'h', 'n', 0 };

* Or with a string constant:

char name[5] = "John";

* Different quotes have different purposes!!!
— Double quotes are for strings

— Single quotes are for chars (characters)
29

www.umbc.edu

Accessing Array Elements

* Use square brackets to access a single element
cout << "The third element is "
<< numbers[2] << endl;

* This gives the output:
The third element is 6

I
Ol
N
o)
O
W

numbers

30

www.umbc.edu

Accessing Array Elements

* C++ also accepts any expression as a “subscript”

— But it must evaluate to an integer
numbers|[(start + end) / 2];

* IMPORTANT!

e C++ does not do bounds checking for simple
arrays, so you must ensure you are staying
within bounds

31

www.umbc.edu

Constants as Array Size

* You should always used a defined/named
constant for your array size

— Do not use magic numbers!

const int NUMBER OF STUDENTS = 5;
int score[NUMBER OF STUDENTS];

* I[mproves readability, versatility, and
maintainability

32

www.umbc.edu

Arrays and Functions

www.umbc.edu

Arrays in Functions

e As arguments to functions
—Indexed variables

* An individual element of an array can be passed

— Entire arrays

e All array elements can be passed as one entity

 As return value from function

— Can be done, but we’ll cover it later

34

www.umbc.edu

Passing Indexed Variables

 Handled the same way as a “regular” variable

— Function declaration:
void myFunction (double parl);

— Variables:
double n, a[l0];

— Valid function calls:
myFunction(a[3]); // a[3] is double
myFunction (n) ; // n is double

35

www.umbc.edu

Passing Entire Arrays

 Formal parameter can be an entire array
— Passed into the function by the array’s name
— Called an array parameter

* Must send size of array as well
— Typically done as second parameter
— Simple integer-type formal parameter

36

www.umbc.edu

Live Coding Exercise

£fi111Up.cpp

Arrays, initialization, and functions

www.umbc.edu

Array Parameter Example

AN HONORS UNIVERSITY IN MARYLAND

Display 5.3 Function with an Array Parameter

SAMPLE DIALOGUEFUNCTION DECLARATION

void fillUp(int a[], int size);

//Precondition: size 1is the declared size of the array a.
//The user will type in size integers.

//Postcondition: The array a is filled with size integers
//from the keyboard.

SAMPLE DIALOGUEFUNCTION DEFINITION

void fillUp(int a[], int size)

{
cout << "Enter " << size << " numbers:\n";
for (int 1 = 0; 1 < size; i++)
cin >> ali]l;
cout << "The last array index used is " << (size - 1) << endl;
h
38

www.umbc.edu

Array as Argument Example

* Using the function from the previous slide,
consider this code, inside amain () function:

int score[5], numberOfScores = 5;

fillUp (score, numberOfScores) ;

entire array integer value

Note the lack of [] brackets
in the array argument!

39

www.umbc.edu

Array as Argument Explanation

* How does this work? What’s being passed?

* Think of an array as 3 components:
— Address of first indexed variable (arrName[0])
— Array base type
— Size of array

* Only the first piece is passed!
— Just the beginning address of the array
— We’ll discuss this in detail later

40

www.umbc.edu

Array Parameters

* Array size must be sent separately

— But this actually increases functionality!

 Same function can be used on any size array!

int score[5], time[1l0];
fillUp (score, 5);
£fillUp(time, 10);

41

www.umbc.edu

Multidimensional Arrays

* Arrays with more than one index
char page[30][100];

— Two indices: an "array of arrays"

— Visualize as:
page[0] [0], page[O][1l], ..., page[0][99]
page[1] [0], page[l][1l], ..., page[l][99]
page[29] [0], page[29][1], ..., page[29][99]

* C++ allows any number of indexes

— Typically no more than two or three

42

www.umbc.edu

Multidimensional Array Parameters

AN HONORS UNIVERSITY IN MARYLAND

* Similar to one-dimensional array

— 1st dimension size not given
* Provided as second parameter of function

— 2nd dimension size is given

void DisplayPage (char page[][100], int numRows) {
for (int 1 = 0; i < numRows; i++) {
for (int jJ = 0; j < 100; j++) {
cout << page[i][j];
}
cout << endl;

43

www.umbc.edu

Review: Array Limitations

* Simple arrays have limitations
— Array out-of-bounds access
— No resizing
— Hard to get current size
— Not initialized
— Mostly due to efficiency and backwards-
compatibility, which are high priorities in C/C++

e Later, we will learn about the vector class,
which addresses many of these issues

44

www.umbc.edu

Announcements

* The course policy agreement is due back in
class by Tuesday, February 9t

— Worth 1% of your grade
— (Final is now worth 19%)

* The Blackboard site is now available

— Course schedule is now available
e Next time: Pointers and References

45

www.umbc.edu

